翻訳と辞書
Words near each other
・ Holboca
・ Holboca Power Station
・ Holboca River
・ Holboellia
・ Holboellia coriacea
・ Holborn
・ Holborn (disambiguation)
・ Holborn (UK Parliament constituency)
・ HOL (proof assistant)
・ Hol (role-playing game)
・ Hol (surname)
・ Hol Bygdemuseum
・ Hol Chan Marine Reserve
・ Hol Church (Nordland)
・ Hol IL
HOL Light
・ Hol Maren
・ Hol, Nordland
・ Hol, Tjeldsund
・ Hol-Tan
・ HolA
・ Hola
・ Hola (ethnic group)
・ Hola (VPN)
・ Hola Airlines
・ Hola Airport
・ Hola Chicuelos
・ Hola Hola
・ Hola massacre
・ Hola Mohalla


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

HOL Light : ウィキペディア英語版
HOL Light
HOL Light is a member of the HOL theorem prover family. Like the other members, it is a proof assistant for classical higher order logic. Compared with other HOL systems, HOL Light is intended to have relatively simple foundations. HOL Light is authored and maintained by the mathematician and computer scientist John Harrison. HOL Light is released under the simplified BSD license.〔https://code.google.com/p/hol-light/〕
==Logical foundations==

HOL Light is based on a formulation of type theory with equality
as the only primitive notion. The primitive rules of inference
are the following:

| style="text-align: center;" | REFL
| reflexivity of equality
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | TRANS
| transitivity of equality
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | MK_COMB
| congruence of equality
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | ABS
| abstraction of equality (x must not be free in \Gamma)
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | BETA
| connection of abstraction and function application
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | ASSUME
| assuming p, prove p
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | EQ_MP
| relation of equality and deduction
|-
| style="text-align: center;" | \cfrac
) \vdash p = q}

| style="text-align: center;" | DEDUCT_ANTISYM_RULE
| deduce equality from 2-way deducibility
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | INST
| instantiate variables in assumptions and conclusion of theorem
|-
| style="text-align: center;" | \cfrac

| style="text-align: center;" | INST_TYPE
| instantiate type variables in assumptions and conclusion of theorem
|}
This formulation of type theory is very close to the one described in
section II.2 of .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「HOL Light」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.